

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE COMBINED SCIENCE: TRILOGY

Higher Tier Chemistry Paper 1H

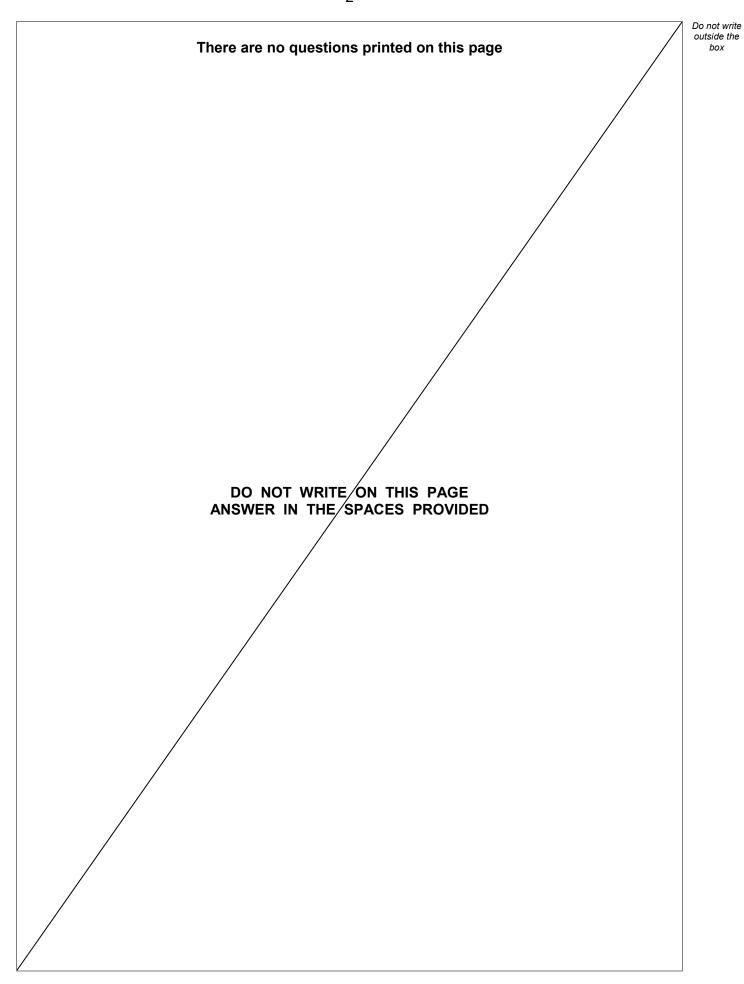
Friday 17 May 2024 Morning Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

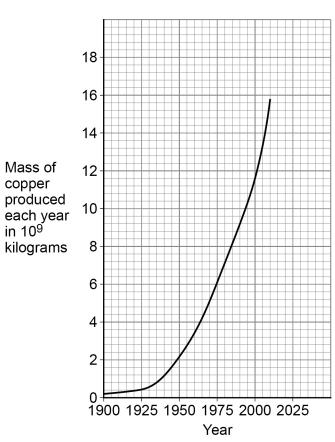
Instructions


- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use Question Mark 1 2 3 4 5 6 7 8 TOTAL

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.



- 0 1 Copper is a useful metal.
- 0 1. 1 Figure 1 shows the mass of copper produced between 1900 and 2010.

Figure 1

Give two conclusions that can be made from Figure 1.

[2 marks]

1_____

2_____

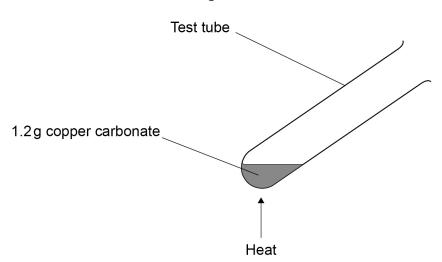
Question 1 continues on the next page

	Mixtures of copper and zinc are heated t	o produce alloys.
0 1.2	Figure 2 represents the structures of pull alloy of copper and zinc.	re copper and of an
	Figure 2	
		Copper atom Copper atom Alloy of copper and zinc
	Explain why the alloy of copper and zinc	is harder than pure copper
	Use Figure 2.	is natural than pure copper.
	5 - 1 - 1 3 - 1 - 1	[3 marks]

	5	
0 1.3	A 5.25 g sample of an alloy of copper and zinc contains 13.5% zinc by mass. Calculate the mass of copper in the 5.25 g sample. Give your answer to 3 significant figures. [4 marks]	Do not write outside the box
	Mass of copper (3 significant figures) =g	9
	Turn over for the next question	

0 2 A student prepared copper sulfate by reacting an acid with excess copper carbonate. Figure 3 shows the first two stages in the preparation of copper sulfate. Figure 3 Stage 1 Stage 2 Copper sulfate solution Unreacted Copper copper carbonate carbonate Beaker Beaker N Acid Copper sulfate solution 0 2 . 1 What is the formula of the acid used to prepare copper sulfate? [1 mark] Tick (✓) one box. HCl HNO₃ H₂SO₄

0 2.2	Why is excess copper carbonate used in stage 1 ?	[1 mark]
0 2.3	Beaker N contained copper sulfate solution.	
	Describe how the student could produce copper sulfate crystals from the copper sulfate solution in beaker ${\bf N}$.	
		[2 marks]
	Question 2 continues on the next page	



A student investigated the thermal decomposition of copper carbonate.

Copper carbonate decomposes to form two products.

Figure 4 shows the apparatus.

Figure 4

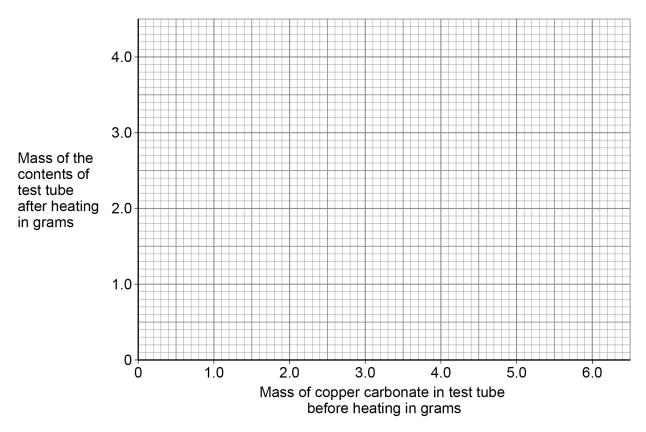
This is the method used.

- 1. Add 1.2 g of copper carbonate to a test tube.
- 2. Heat the test tube and contents until the mass does not change.
- 3. Record the mass of the contents of the test tube after heating.
- 4. Repeat steps 1 to 3 with different masses of copper carbonate.

Table 1 shows the results.

Table 1

Mass of copper carbonate in test tube before heating in grams	Mass of the contents of test tube after heating in grams
1.2	0.8
2.4	1.7
3.6	2.2
4.8	3.1
6.0	3.9



0 2.4 Plot the data from Table 1 on Figure 5.

Draw a line of best fit.

[3 marks]

Figure 5

0 2 . 5 Why does the mass of the contents of the test tube decrease in mass when copper carbonate is thermally decomposed?

[1 mark]

8

Turn over for the next question

Do not write outside the box

0 3

Table 2 shows diagrams which represent the structures of two substances.

Table 2

Substance	Structure
Sodium chloride NaCl	- + - + - + - + -
Oxygen O ₂	

Compare the structure and bonding of sodium chloride and oxygen.	[6 marks]

6

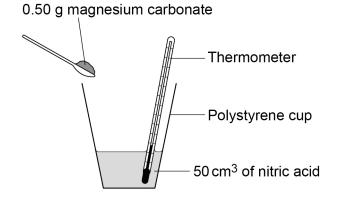
	H		
) 4	Nitric acid (HNO₃) is a strong acid.		Do no outsid
0 4.1	What is meant by a 'strong acid'?	[1 mark]	
4.2	Nitric acid is used as a dilute aqueous solution.		
	What is meant by 'dilute aqueous solution'?	[1 mark]	
	Question 4 continues on the next page		

Turn over ▶

Do not write outside the box

Water is added to the nitric acid solution to change the pH of the nitric acid solution to pH 3 How does the hydrogen ion concentration change? [1 mark] Tick (*) one box. Decreases by a factor of 100 Increases by a factor of 10 Increases by a factor of 10 Increases by a factor of 100 Increases by	0 4.3	10 cm³ of a nitric acid solution has a pH of 1	
Tick (Decreases by a factor of 100 Decreases by a factor of 10 Increases by a factor of 10 Increases by a factor of 10 Increases by a factor of 100 Write the ionic equation for the reaction between an acid and an alkali. [1 mark]			
Tick (✓) one box. Decreases by a factor of 100 Decreases by a factor of 10 Increases by a factor of 10 Increases by a factor of 100			,
Decreases by a factor of 10 Increases by a factor of 10 Increases by a factor of 100 Write the ionic equation for the reaction between an acid and an alkali. [1 mark]			1
Increases by a factor of 10 Increases by a factor of 100 Write the ionic equation for the reaction between an acid and an alkali. [1 mark]		Decreases by a factor of 100	
Increases by a factor of 100 Write the ionic equation for the reaction between an acid and an alkali. [1 mark]		Decreases by a factor of 10	
0 4. 4 Write the ionic equation for the reaction between an acid and an alkali. [1 mark]		Increases by a factor of 10	
[1 mark]		Increases by a factor of 100	
	04.4	[1 mark	

	The equation shows the reaction between magnesium carbonate and nitric acid	d.
	$MgCO_3 + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2O + CO_2$	
0 4.5	What is the ratio of the number of moles of magnesium carbonate to the number of moles of nitric acid in the reaction? Tick (✓) one box.	1 mark]
	1:1	
	1:2	
	2:1	
	2:2	
0 4.6	A student mixed some magnesium carbonate with excess nitric acid.	
	The student then added two drops of universal indicator to the solution.	
	What colour was the solution after the addition of universal indicator? Tick (\checkmark) one box.	1 mark]
	Tiok (*) one box.	
	Red	
	Green	
	Blue	



A student investigated the temperature change when different masses of magnesium carbonate were reacted with excess nitric acid.

Figure 6 shows the apparatus.

Figure 6

This is the method used.

- 1. Pour 50 cm³ of nitric acid into a polystyrene cup.
- 2. Measure the temperature of the solution.
- 3. Add 0.50 g of magnesium carbonate.
- 4. Stir the mixture.
- 5. Measure the temperature.
- 6. Repeat steps 1 to 5 with different masses of magnesium carbonate.

0 4.7	Give two improvements to the method to produce more accurate results.	
	Do not refer to improvements to the apparatus in your answer.	[2 marks]
	1	
	2	

8

Do not write outside the Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

- 0 5 Nitrogen reacts with hydrogen to produce ammonia (NH₃).
- 0 5. 1 Complete the dot and cross diagram for an ammonia molecule.

[2 marks]

0 5.2	The equation for the reaction between nitrogen and hydrogen to produce ammonia is:
	$N_2 \ + \ 3H_2 \ \rightarrow \ 2NH_3$
	Calculate the mass of hydrogen that is needed to produce 25 g of ammonia.
	Relative atomic masses (A_r): $H = 1$ $N = 14$ [4 marks]
	,——————————————————————————————————————
	Mass of hydrogen = g

Question 5 continues on the next page

Figure 7 shows the displayed formulae equation for the reaction of nitrogen with hydrogen.

$$N \equiv N$$
 + $3H-H$ \longrightarrow $2H-N-H$ $|$ $|$ H

In the reaction the energy released forming new bonds is 93 kJ/mol greater than the energy needed to break existing bonds.

Table 3 shows bond energies.

Table 3

Bond	$N \equiv N$	Н—Н	N — H
Bond energy in kJ/mol	945	х	391

0 5 . 3	Calculate the bond energy X for the H—H bond.		
	Use Figure 7 and Table 3.	[5	marks]
	X =		kJ/mol

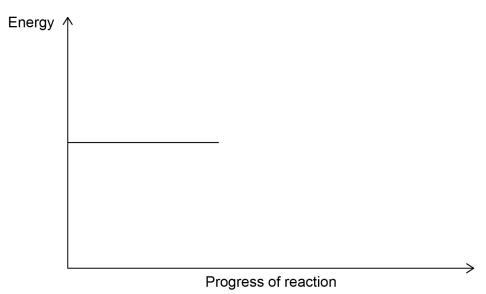
Do not write outside the

14

0 5 . 4

Energy is released from the reaction to produce ammonia.

Figure 8 shows part of the reaction profile for the reaction between nitrogen and hydrogen to produce ammonia.


Complete Figure 8.

You should:

- complete the profile line
- label the energy level of the reactants and the product
- label the overall energy change.

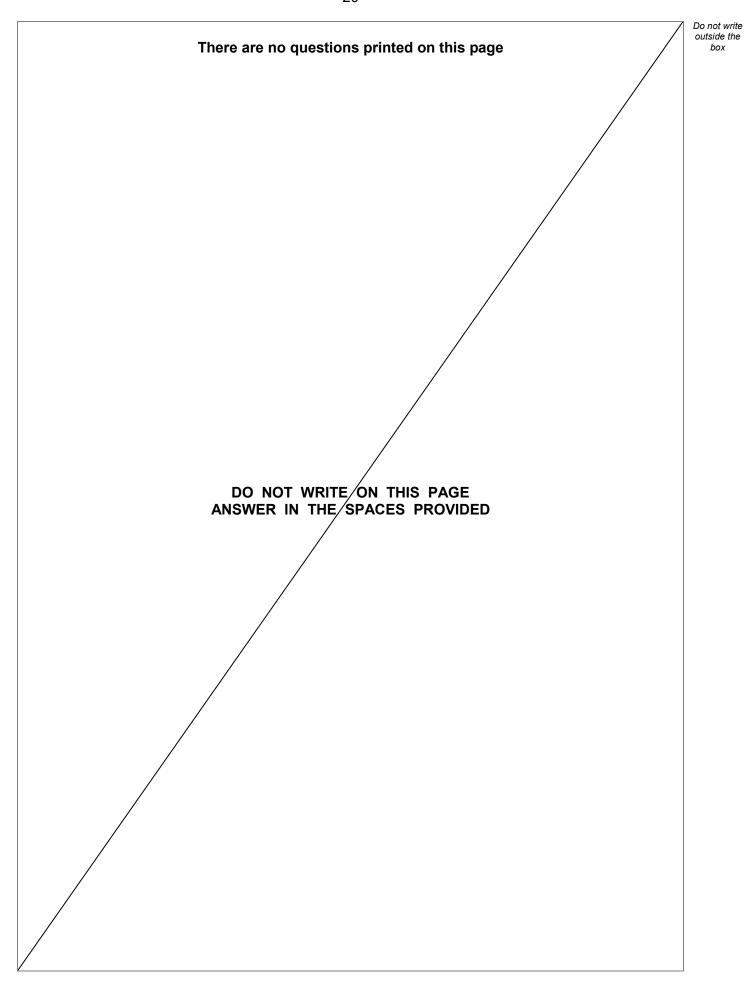
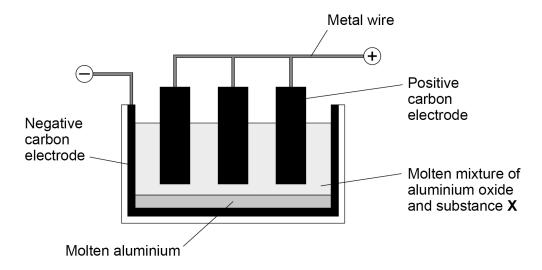

[3 marks]

Figure 8

Turn over for the next question

Do not write outside the box


0 6	In the Earth most metals are found as compounds.	
0 6.1	Name one metal that is found in the Earth as the metal itself. [1 mark]	
	Figure 9 shows a reactivity series.	
	Figure 9	
	Most reactive	
	Potassium	
	Magnesium	
	Zinc	
	Carbon	
	Metal Z	
	Copper	
	Least reactive	
0 6.2	Suggest the most economical method for extracting metal Z from an oxide of metal Z . [1 mark]	
	Question 6 continues on the next page	

Do not write outside the

Figure 10 shows the electrolysis cell used to extract aluminium from aluminium oxide.

0 6. 3 Name substance **X** shown in **Figure 10**.

[1 mark]

Explain what happens to the positive carbon electrodes during the extraction of aluminium from aluminium oxide. [3 marks]	
The formula of aluminium oxide is Al_2O_3	
Write a half equation for the reaction at the negative electrode in Figure 10 . [2 marks]	
Turn over for the next question	
	aluminium from aluminium oxide. [3 marks] The formula of aluminium oxide is Al_2O_3 Write a half equation for the reaction at the negative electrode in Figure 10 .

		_
0 7	Halogens are elements in Group 7 of the periodic table.	Do not write outside the box
0 7.1	Calcium reacts with chlorine to produce calcium chloride. Explain what happens to calcium atoms and to chlorine atoms when calcium reacts with chlorine to produce calcium chloride. [4 marks]	
0 7.2	Explain why chlorine is more reactive than bromine. [4 marks]	

Do not write outside the

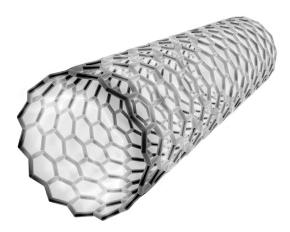
0 7.3 Table 4 shows the boiling points of four hydrogen halides.

Table 4

Hydrogen halide	Boiling point in °C
HF	20
HCl	-85
HBr	-67
н	-35

Describe how the boiling points of the hydrogen halides change as the relative formula mass changes. [2 marks]

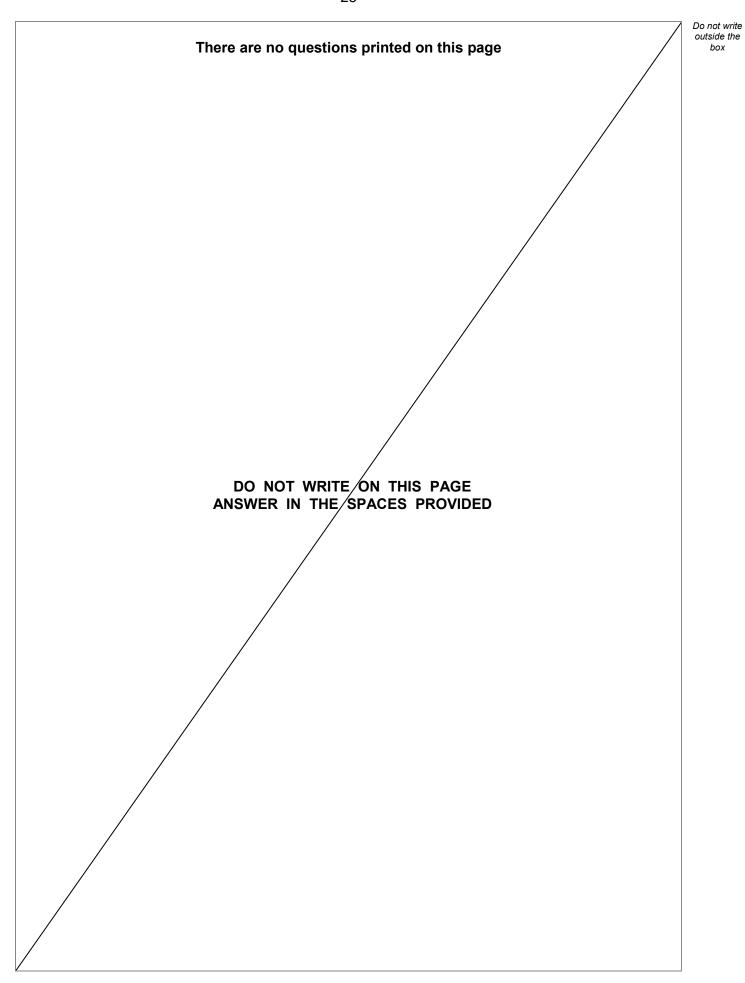
10


Turn over for the next question

0 8 Carbon nanotubes are cylindrical fullerenes.

Figure 11 represents the structure of a carbon nanotube.

Figure 11



0 8.1	Describe the arrangement of carbon atoms in the nanotube shown in Figure	11. [1 mark]
0 8.2	Nanotubes are used in electronics.	
	Give one other use of nanotubes.	[1 mark]

0 8 . 3	A nanotube contains 2380 carbon atoms.	
	Calculate the number of moles of carbon in this nanotube.	
	The Avogadro constant is 6.02 × 10 ²³ per mole.	[2 marks]
	Number of moles of carbon =	mols
0 8 . 4	Explain why carbon nanotubes can conduct electricity.	
	Refer to bonding between carbon atoms in your answer.	[3 marks]
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

32 There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 AQA and its licensors. All rights reserved.

Do not write outside the