

PICTURE CLUEDO

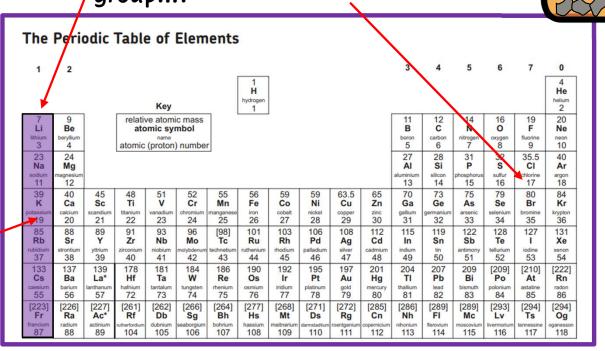
Oil Group Electron Ionic Non-metals Reactive

Positive ions One They make this type of compound?

sodium

lithium

They are all very...?

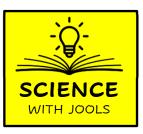


of these from their outer shell?

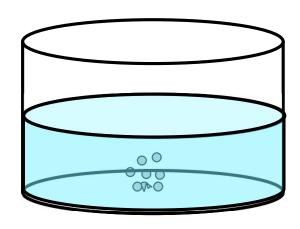
The electron is more easily lost as you go down the ...? They can be found in group...?

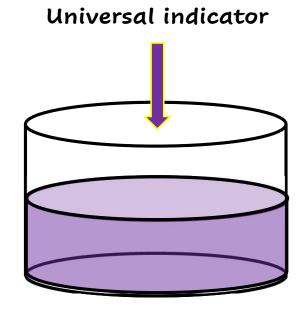
Stored in...? They form?

They all react with...?


non-metals

GROUP 1 metals are called _____ metals. They are stored in ____ and can only be handled with forceps. Group 1 metals are very _____ They react with non-metals such as chlorine, ____ and oxygen. All group 1 metals have one _____ in their outer shell. This means that they react in a similar way and have similar _____ They form an ____ bond, and a white solid is usually produced. Group 1 metals have a low _____ and reactivity _____ down the group. They all lose one _____ from their outer shell which is transferred to non-metals to form 1+ positive ions. The _____ electron is more easily lost as you go down the group because it is further from the _____. Group 1 metals form metal _____ when they react with oxygen and metal _____ when they react with water.


density
oxides
properties
increases
alkali
nucleus
electron
oil
electron
water
reactive
hydroxides
ionic
outer



ALKALI METALS REACTIONS WITH WATER

Alkali metals react with water to form a metal
and hydrogen gas.
Alkali metals are very so react very
vigorously with water. The further down the
the alkali metal is, the morethe
reaction will be. When lithium (Li), sodium (Na)
or potassium (K) are put into water, they
and move around on the surface, fizzing as
gas is produced. Sometimes the
reaction can get hot enough to ignite the
hydrogen.
METAL HYDROXIDE SOLUTIONS
The hydroxides formed when alkali metals
dissolve in water are (OH-) solutions. The
solution is clear, but you can test to see if an
alkaline solution is produced by using
indicator which will turn the solution purple.

alkaline
float
violent
hydroxide
group
universal
reactive
hydrogen

0 4	This question is about Group 1 elements.
0 4.1	Give two observations you could make when a small piece of potassium is added to water.
	[2 marks]
	2
0 4.2	Complete the equation for the reaction of potassium with water.
	You should balance the equation. [2 marks]
	K + H_2O \rightarrow +
0 4.3	Explain why the reactivity of elements changes going down Group 1. [4 marks]

PAPER 1 (GROUP 1)

Do not write outside the box

(a)	Sodium is a Group 1 element.
(a) (i)	A small piece of sodium is added to some water containing Universal Indicator solution.
	Describe what you would see happening.
	(3 marks)
(a) (ii)	Complete and balance the equation for the reaction of sodium with water.
() ()	
	Na + $H_2O \rightarrow$ + H_2 (2 marks)
(b)	Francium is the most reactive element in Group 1.
	Explain why in terms of electronic structure.
	(3 marks)